Breaking Barriers

    In oncology, Hanes and others are working to develop better drug delivery technologies that allow oncologists to be far more accurate in their application of the powerful chemical toxins meant to kill cancerous cells, but which also ravage healthy tissue. He notes that as little as 1 percent of current chemotherapy drugs actually reach the tumors they are intended to destroy, while the remaining 99 percent kill healthy cells and tissues in other parts of the body. “It’s the equivalent of poisoning a garden to kill a single weed,” Hanes says. “Nanomedicine could make it possible to get more drug to the tumor where it is needed and less to healthy tissues where it is not.”

    In ophthalmology, Hanes is working with Wilmer colleagues to fight numerous diseases that cause blindness, including the wet type of age-related macular degeneration, a leading cause of blindness in American adults. The disease is known as “wet” because abnormal blood vessels form behind the retina where they leak fluid and damage the macula, the region of the eye responsible for seeing fine detail. If left untreated, scar tissue forms under the retina, causing a rapid loss of vision. There are drugs that can impede the growth of these blood vessels and slow the rate of fluid leakage, but the price for the patient is steep: needle injections directly into the eye every four to eight weeks. So far, less invasive eye drops and pills have not proved viable because too little of the drug makes it to the site of disease to be effective.

    Hanes and his Wilmer colleague Peter Campochiaro published a paper in October 2013 in the Journal of Controlled Release in which they successfully married individual anti-angiogenesis drug molecules within a biodegradable plastic. As the plastic slowly dissolves, the active drug is freed bit by bit. In effect, the researchers have created a time-release mechanism that allows the drug to remain in the eye much longer than the drug alone could. In the short term, it could mean injections that are fewer and farther between. In the long term, Hanes can foresee nanotechnology-enabled eye drops or pills that may reduce injection frequency even further and, perhaps, even prevent progression of the disease to the wet form. “If we can do that,” Hanes says, “then we open the door to effective methods to not only treat devastating diseases like this but to actually prevent them from occurring in the first place.”

    (continued)

    Molecular inhibitor represents new treatment target for drugs to halt atherosclerosis Working with...
    Gene Variation Affects Brain Cell Development Johns Hopkins researchers have begun to connect the...
    Molecular “Eat Now” Sign Makes Cells Devour Dying Neighbors A team of researchers has devised a Pac...
    Star-shaped brain cells may help control brain’s focus A new study from The Johns Hopkins...
    Discoveries hail from cataloging human proteins Striving for the protein equivalent of the Human...
    Compounds in saliva may fend off chemicals in tea and coffee A compound in saliva, along with...
    Scientists discover how tumor cells divide when oxygen-starved Most cells do not divide unless...
    Tumor cells penetrated by particles carrying genetic instructions. Working together, Johns Hopkins...
    Got grapes? UCLA researchers have demonstrated how resveratrol, an antioxidant derived from grapes...
    Our bodies may not have caught up with the Bombardier Global 6000, but new research illuminates how...