Development of New Cornea Endothelial Cell Lines Provides Powerful Tool

    Human corneal endothelial cells (HCEnCs) form a monolayer of hexagonal cells whose main function is to maintain corneal clarity by regulating corneal hydration. Cell loss due to aging or corneal endothelial disorders, such as Fuchs dystrophy, can lead to cornea edema and blindness, resulting in the need for cornea transplants.

    Studying human corneal endothelium has been difficult for cell biologists because limited cellular model systems exist and have significant drawbacks. The major drawback is that HCEnC cells do not divide and there is a limited source of these cells both for patient transplantation and for study in the laboratory. This field of study is now easier.

    Scientists from the Schepens Eye Research Institute, Mass. Eye and Ear, have developed of HCENC-21 and HCEnC-21T, two novel model systems for human corneal endothelium. Their findings, Telomerase Immortalization of Human Corneal Endothelial Cells Yield Functional Hexagonal Monolayers, are online in the PLOS ONE.

    A research team led by Ula Jurkunas, M.D., developed first-of their kind model systems for human corneal endothelium.

    “These models mimic very well the critical characteristics and functionalities known from the tissue in the eye,” Dr. Jurkunas said. “They also fulfill essential technical requirements, e.g. indefinite number of and a high rate of cell division, to be a powerful tool. They will enable cell biologists to more reliably study human corneal endothelium in health and disease. The ability to enhance HCEnC cell self renewal and growth opens a new window of development of novel regenerative therapies for corneal swelling, hopefully reducing the need for corneal transplantation in the future.”

    Photo by dolgachov/Thinkstock
    While we routinely make sacrifices for the people we feel closest to — our spouses, children and...
    Could our reaction to an image of an overweight or obese person affect how we perceive odor? A trio...
    illustration by Carl wiens
    Lessons learned from early organ recipients continue to hearten the future of transplant medicine....
    Molecular inhibitor represents new treatment target for drugs to halt atherosclerosis Working with...
    Gene Variation Affects Brain Cell Development Johns Hopkins researchers have begun to connect the...
    Molecular “Eat Now” Sign Makes Cells Devour Dying Neighbors A team of researchers has devised a Pac...
    Star-shaped brain cells may help control brain’s focus A new study from The Johns Hopkins...
    Discoveries hail from cataloging human proteins Striving for the protein equivalent of the Human...
    Compounds in saliva may fend off chemicals in tea and coffee A compound in saliva, along with...
    Scientists discover how tumor cells divide when oxygen-starved Most cells do not divide unless...